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As circus and vaudeville performers have known for a long time� juggling is

fun� In the last twenty years or so this has led to a surge in the number
of amateur jugglers� It has been observed that scientists� and especially
mathematicians and computer scientists� are disproportionately represented

in the juggling community� It is di�cult to explain this connection in any
straightforward way� but music has long been known to be popular among
scientists� juggling� like music� combines abstract patterns and mind�body
coordination in a pleasing way� In any event� the association between math�

ematics and juggling may not be as recent as it appears� since it is believed
that the tenth century mathematician Abu Sahl started out juggling glass
bottles in the Bagdad marketplace ��	
� p� ��
�

In the last �fteen years there has been a corresponding increase in the

application of mathematical and scienti�c ideas to juggling ���
� ��
� ��
�
���
� ��	
� ���

� including� for instance� the construction of a juggling robot
���

� In this article we discuss some of the mathematics that arises out of a

recent juggling idea� sometimes called �site swaps�� It is curious that these
idealized juggling patterns lead to interesting mathematical questions� but
are also of considerable interest to �practical� jugglers� The basic idea seems
to have been discovered independently by a number of people� we know of

three groups or individuals that developed the idea around ����� Bengt
Magnusson and Bruce Tiemann ����
� ���

� Paul Klimek in Santa Cruz� and
one of us �C� W�
 in conjunction with other members of the Cambridge
University Juggling Association� A precursor of the idea can be found in

���
�
Although our interests here are almost entirely mathematical� the reader

interested in actual juggling or its history might start by looking at ���
 and

���
� a leisurely discussion of site swaps� aimed at jugglers� can be found in
���
�

In the �rst section we describe the basic ideas� and in the second section
we prove the basic combinatorial result that counts the number of site swaps

with a given period and a given number of balls� This theorem has a non�
obvious generalization to arbitrary posets ���

� Special cases of that result

�



can be interpreted in terms of an interesting generalization of site swaps� we
�nd it delightful that a question arising from juggling leads to new mathe�
matics which in turn may say something about patterns that jugglers might
want to consider�

� Juggling

As mathematicians are in the habit of doing� we start by throwing away
irrelevant detail� In a juggling pattern we will ignore how many people or
hands are involved� ignore which objects are being used� and ignore the
speci�c paths of the thrown objects� We will assume that there are a �xed

number of objects �occasionally referred to as �balls� for convenience
 and
will pay attention only to the times at which they are thrown� and will
assume that the throw times are periodic� Although much of the interest of

actual juggling comes from peculiar throws �behind the back� o� the head�
etc�
� peculiar objects �clubs� calculus texts� chain saws� etc�
� and peculiar
rhythms� we will �nd that the above idealization is su�ciently interesting�

Suppose that you are juggling b balls in a constant rhythm� Since the

throws occur at discrete equally�spaced moments of time� and since in our
idealized world you have been juggling forever and will continue to do so� we
identify the times t of throws with integers t � Z �� f� � � ������� �� �� �� � � �g�

Since it would be silly to hold onto a ball forever� we assume that each

ball is thrown repeatedly� We also assume that only one ball is thrown at
any given time� With these conventions� a juggling pattern with b balls
is described� for our purposes� by b doubly�in�nite disjoint sequences of

integers�

The three ball cascade is perhaps the most basic juggling trick� Balls
are thrown alternately from each hand and travel in a �gure eight pattern�
The balls are thrown at times

ball �� � � �� ���	� �� 	� �� � � �

ball �� � � �� ����� �� �� �� � � �

ball 	� � � �� ����� �� �� �� � � �

This pattern has a natural generalization for any odd number of balls� but

can�t be done in a natural way with an even number of balls � even if
simultaneous throws were allowed� in a symmetrical cascade with an even
number of balls there would be a collision at the center of the �gure eight�

�



Figure �� A cascade

Figure �� A fountain �waterfall


Another basic pattern� sometimes called the fountain or waterfall� is most
commonly done with an even number of balls and consists of two disjoint
circles of balls�

The four ball waterfall gives rise to the four sequences f�n � a � n � Zg

of throw times� for a � �� �� �� 	�
The last truly basic juggling pattern is called the shower� In a shower the

balls travel in a circular pattern� with one hand throwing a high throw and

the other throwing a low horizontal throw� The shower can be done with any
number of balls� most people �nd that the three ball shower is signi�cantly
harder than the three ball cascade� The three ball shower corresponds to
the sequences

ball �� � � �� ����� �� �� �� � � � �

ball �� � � �� ���	� �� 	� �� � � � �

ball 	� � � �� ����� �� �� ��� �� � � �

We should mention that although non�jugglers are often sure that they
have seen virtuoso performers juggle �� or �� balls� the historical record

for a sustained ball cascade seems to be nine� Enrico Rastelli� sometimes
considered the greatest juggler of all time� was able to make twenty catches
in a ���ball waterfall pattern� Rings are somewhat easier to juggle in large

numbers� and various people have been able to juggle �� and �� rings�
Now we return to our idealized form of juggling� Given lists of throw

times of b balls de�ne a function f �Z� Z by

f�x
 �

�
y if the ball thrown at time x is next thrown at time y
x if there is no throw at time x�

This function is a permutation of the integers� Moreover� it satis�es f�t
 � t

Figure 	� A shower

	



Figure �� t� t� 	

Figure �� ���

for all t � Z� This permutation partitions the integers into orbits which
�ignoring the orbits of size one
 are just the lists of throw times�

The function f�t
 � t�	 corresponds to the 	�ball cascade� which could

be graphically represented as in Figure ��
Similarly� the function f�x
 � x � � represents the ordinary ��ball wa�

terfall� The three ball shower corresponds to a function that has a slightly
more complicated description� The juggler is usually most interested in the

duration f�t
� t between throws which corresponds� roughly� to the height
to which balls must be thrown�

De�nition� A juggling pattern is a permutation f �Z� Z such that f�t
 � t
for all � Z� The height function of a juggling pattern is df�t
 �� f�t
� t�

The three ball cascade has a height function df�t
 � 	 that is con�
stant� The three ball shower has a periodic height function whose values are
� � � �� �� �� �� � � �� The juggling pattern in Figure � corresponds to the function

f�x
 �

�
x� � if x � �� � mod 	

x� � if x � � mod 	

which is easily veri�ed to be a permutation� The height function takes on
the values �� �� � cyclically� This trick is therefore called the ����� among
those who use the standard site swap notation� It is not terribly di�cult to

learn but is not a familiar pattern to most jugglers�
Remark

� We refer to df�t
 as the height function even though it more properly
is a rough measure of the elapsed time of the throw� From basic
physics the height is proportional to the square of the elapsed time�

The elapsed time is actually less than df�t
 since the ball must be held

before being thrown� for a more physical discussion of actual elapsed
times and throw heights see ���
�

� Although there is nothing in our idealized setup that requires two
hands� or even �hands� at all� we note that in the usual two�handed

�



juggling patterns� that a throw with odd throw height df�t
 goes from
one hand to the other� and a throw with even throw height goes from
one hand to itself�

� If f�t
 � t� so that df�t
 � �� then no throw takes place at time t� In
actual practice this usually corresponds to an empty hand�

� Nothing in our model really requires that the rhythm of the juggling
pattern be constant� We only need a periodic pattern of throw times�
We retain the constant rhythm terminology in order to be consistent
with jugglers� standard model of site swaps�

� The catch times are irrelevant in our model� Thus a throw at time t of

height df�t
 is next thrown at time t�df�t
 � f�t
� but in practice it is
caught well before that time in order to allow time to prepare for the
next throw� A common time to catch such a throw is approximately

at time f�t
� ��� but great variation is possible� A theorem due to
Claude Shannon ���	
� ��

 gives a relationship between �ight times�
hold times� and empty times in a symmetrical pattern�

Now let f be a juggling pattern� This permutation of Z partitions the
integers into orbits� since f�t
 � t� the orbits are either in�nite or else
singletons�

De�nition� The number of balls of a juggling pattern f � denoted B�f
� is
the number of in�nite orbits determined by the permutation f �

Our �rst result says that if the throw height is bounded� which is surely

true for even the most energetic of jugglers� then the number of balls is �nite
and can be calculated as the average value of the throw heights over large
intervals�

Theorem thm� If f is a bijection and df�t
 � f�t
� t is a non�
negative and bounded then the limit

lim
jIj��

P
x�I df�x


jIj

exists and is equal to B�f
� where the limit is over all integer
intervals

I � fa� a� �� � � � � bg � Z�

�



Figure �� One orbit

Figure �� In�nitely many balls

Proof thm� Suppose that df�t
 � B for all t� If I is an interval
such that jIj � B then any in�nite orbit intersects I� The sum of
df�t
 over the points in I lying in a given in�nite orbit is bounded

above by I and below by jIj � �B�

If I is large enough then the sum of df�t
 for t � I can be made
arbitrarily close to the number of in�nite orbits of f � the single�
ton orbits don�t contribute since df�t
 � � for those orbits� Thus

in the limit the average of df over an interval fa� a� �� � � � � bg of
consecutive integers must become arbitrarily close to the number
of in�nite orbits of the permutation�

Remark

� The limit is clearly a uniform limit in the sense that for all positive �

there is an m such that if I is an interval of integers with more than
m elements then the average of df over I is within � of B�f
�

� As an example illustrating the theorem we note if f is the ��� pattern
described earlier� then the height function df�t
 is periodic of period 	�

The long term average of df�t
 over any interval approaches the average

over the period� i�e�� ������
�	 � 	� which con�rms what we already
knew� the ��� pattern is a 	�ball trick�

� The hypothesis of bounded throw heights is necessary� Indeed� if
T ��
 � � and� for nonzero t� T �t
 is the highest power of � that divides

t then the pattern f�t
 � t�� 	 T �t
 has unbounded throw height and
in�nite B�f
� as in Figure �� More vividly� you can juggle in�nitely
many balls if you can throw arbitrarily high�

�



� Periodic Juggling

From now on we want to juggle periodically� A juggling pattern is perceived
to be periodic by an audience when its height function is periodic in the
mathematical sense�

De�nition� A period�n juggling pattern is a bijection f � Z�Z such that

df�t� n
 � df�t
 for all t � Z�

If df is of period n then it might also have a period m for some divisor
m of n� If n is the smallest period of df then any other period is a multiple
of n� in this case we will say that f is a pattern of exact period n�

A period�n juggling pattern can be described by giving the �nite se�

quence of non�negative integers df�t
 for t � �� �� � � � � n��� Thus the pattern
����� denotes a period�� pattern� by Theorem � it is a 	�ball pattern since
the �period average� of the height function df�t
 is 	�

Which �nite sequences correspond to juggling patterns� Certainly a
necessary condition is that the average must be an integer� However this
isn�t su�cient� The sequence 	�� has average 	 but does not correspond
to a juggling pattern�if you try to draw an arrow diagram for a map f as

above you�ll �nd that no such map exists� This is also easy to see directly�
for if df��
 � � and df��
 � � then

f��
 � � � df��
 � � � � � df��
 � f��


and such a map isn�t a bijection�

Theorem lem� If f is a period�n juggling pattern then

s � t mod n �
 f�s
 � f�t
 mod n�

Proof lem� If df�t
 is periodic of period n then the function
f�t
 � t� df�t
 is of period n modulo n�

The Lemma implies that a juggling pattern f induces a well�de�ned
injective� and hence bijective� mapping on the integers modulo n� Let �n

denote the set f�� �� � � � � n � �g and let Sn denote the symmetric group
consisting of all permutations �bijections
 of the set �n
� Then for every

period n juggling pattern f there is a well�de�ned permutation �f � Sn
that is de�ned by the condition

f�t
 � �f�t
 mod n� � � t � n�

�



Theorem thm� A sequence a�a� 	 	 	an�� of non�negative integers
satis�es df�t
 � at for some period�n juggling pattern f if and
only if at � t mod n is a permutation of �n
�

Proof thm� Suppose that f is a juggling pattern and at � df�t
�
Then f�t
 � �f�t
 mod n so there is an integer�valued function
g�t
 such f�t
 � �f�t
 � n 	 g�t
 and

df�t
 � f�t
� t � �f�t
� t� n 	 g�t


and

at � t � df�t
 � t � �f�t
 mod n

and the stated condition is satis�ed�

Conversely� suppose that

a�a� 	 	 	 an��

is such that at � t is a permutation of �n
� If we de�ne at for
all integers t by extending the sequence periodically and then
de�ne f�t
 � at � t then f is the desired juggling pattern� To

see that f is injective note that if f�t
 � f�u
 then t � u mod n
since f�t
 is injective modulo n� Then at � au� From f�t
 �
at � t � f�u
 � au � u it follows that t � u and f is injective as
claimed� To show that f is surjective� suppose that u � Z� Since

t� at mod n is a permutation of �n
 we can �nd a a t such that
f�t
 � t � aftg � u mod n� By adding a suitable multiple of n
we can �nd a t� such that f�t�
 � u� This �nishes the proof of
the fact that any sequence satisfying the stated condition comes

from a juggling pattern�

To see if 	�� corresponds to a juggling pattern we add t to the t�th term
and reduce modulo 	� The result is ���� which is a permutation� so 	��
is indeed a juggling pattern �in fact a somewhat di�cult one that is quite

amusing
� On the other hand� the sequence 	�� leads� by the same process�

to ��� which certainly isn�t a permutation of �	
�

�



��� Remarks for Jugglers Only

� The above description is geared towards the standard model� two
hands throwing alternately� in constant rhythm� In fact there could

be any number of hands and it is not necessary to assume that the
rhythm is constant�

� The practical meaning of the throw heights �� �� and � in the standard
model requires a little thought� A throw height of � corresponds to
an empty hand� A throw height of � corresponds to a rapid shower

pass from one hand to another that is thrown again immediately� A
throw height of � would ordinarily indicate a very low throw from a
hand to itself that is thrown again by that hand immediately� This is

actually rather unnatural in practice� the conventional interpretation
����
� ���

 is that a throw height of � is a held ball�

� The paradigm for categorizing juggling patterns here is very interesting
in practice� although many of the patterns require considerable pro��
ciency� Several jugglers who have spent time in working on site swaps

describe the same gain in �exibility and conceptual power that math�
ematicians seem to report from the use of well�chosen abstractions�
The simplest non�obvious site�swap seems to be ���� it is similar to�

but not the same as� the common 	�ball pattern of throwing balls
up on the side while passing a ball back and forth underneath in a
shower pass from hand to hand� �The latter pattern is not commonly

performed with an even rhythm� if it is� it is ����
 The 	�ball �����

pattern is also amusing� and the ��ball ���� pattern looks very much
like the ��ball cascade� The range of feasible and interesting tricks
seems to be unlimited� we mention the following sample� �	�� ����
	��� ����� ������ ���� �		� ������ ����� ��	�� ������� ���� ��	� ����

���� ��	� ���� ���� ����� �	��

� A number of programs are available that simulate site swaps on a com�
puter screen� sometimes with quite impressive graphics� These pro�
grams take a �nite sequence of non�negative integers as input and dy�

namically represent the pattern� The Internet news group rec�juggling
is a source of information on site swaps and various juggling animation
software�

In order to �nd out which �nite sequences represent juggling patterns

we start by noting that a period�n pattern induces a permutation on

�



the �rst n integers�

� Counting Periodic Juggling Patterns

Let N�b� n
 denote the number of period�n juggling patterns f with B�f
 �
b� Our next goal is to calculate this number� From the juggler�s point of view
it might be more useful to count the number of patterns of exact period n

and to count cyclic shifts of a pattern as being essentially the same as the
original pattern� Later we will see that this more natural question can be
answered easily once we know N�b� n
�

The basic idea in the determination of N�b� n
 is to �x a permutation

� � Sn and count the number of patterns f such that �f � �� From the
proof of the previous theorem we have the formula

f�t
 � �f�t
 � n 	 g�t
 � ��t
 � n 	 g�t
� � � t � n�

Thus we must count the number of functions g� �n
 � Z such that if f is

de�ned by the above formula then df�t
 � � and B�f
 � b�
The number of balls of such a pattern f is equal to the average of df�t


over �n
� Thus

B�f
 �
�

n

n��X
t��

df�t
 �
�

n

n��X
t��

���t
� t� n 	 g�t

�

Since ��t
 is a permutation of �n
 we see that this reduces to

B�f
 �
n��X
t��

g�t
�

Thus a function g determines a pattern with B�f
 � b if the sum of its
values is equal to b�

The condition that df�t
� � is a little bit more intricate� Since

df�t
 � ��t
� t� n 	 g�t


we see that g�t
 must be non�negative and also must be strictly positive
whenever ��t
 � t�

��



De�nition� An integer t � �n
 is a drop for the permutation � � Sn if
��t
 � t� moreover� we de�ne

d��t
 �

�
� if t is a drop for �

� if t is not a drop for ��

Write G�t
 � g�t
� d��t
 so that

f�t
 � ��t
 � n 	 d��t
 � n 	G�t
�

Let k be the number of drops of �� Then B�f
 � b if and only if the sum of

the values of G is equal to b� k�
We can summarize this discussion so far as follows� The number N�b� n


of period�n juggling patterns with b balls is equal to the sum over all permu�

tations � � Sn of the number of non�negative functions G�t
 on �n
 whose

value�sum is b� k� where k is the number of drops of ��
A standard combinatorial idea can be used to count the number of se�

quences of non�negative integers with a given sum�

Theorem lem� The number of non�negative n�tuples with sum x
is �

x� n� �

n� �

�
�

Proof lem� A standard �stars and bars� argument �in Feller�s

terminology� e�g�� p� 	� of ��

 gives the answer� The number of
such sequences is equal to the number of ways of arranging n��
bars and x stars in a row if we interpret the size of each con�

tiguous sequence of stars as a component of the n�tuple and the

bars as separating components� The number of such sequences
of bars and stars is the same as the number of ways to chose
n� � locations for the bars out of a total of x� n� � locations�
which is just the stated binomial coe�cient�

Let 	n�k
 be the number of permutations in Sn that have k drops� By

combining the earlier remark with the lemma we arrive at

N�b� n
 �
n��X
k��

	n�k


�
n� b� k � �

n� �

�
�

��



Later it will be convenient to consider the number of period�n juggling pat�
terns with fewer than b balls� If this number is denoted N��b� n
 then� using
a familiar binomial coe�cient identity� we �nd that

N��b� n
 �
b��X
a��

N�a� n
 �
b��X
a��

n��X
k��

	n�k


�
n� a� k � �

n� �

�

�
n��X
k��

	n�k

b��X
a��

�
n� a� k � �

n� �

�
�

n��X
k��

	n�k


�
n� b� k � �

n

�

In order to simplify this further we recall the idea of a descent of a
permutation and show that even though drops and descents aren�t the same
thing� the number of permutations with k drops is the same as the number

with k descents�

De�nition� If � � Sn then i � �n
 is a descent of � if ��i
 � ��i��
 where
� � i � n� �� The number of elements of Sn with k descents is denoted�

n

k

�

and is called an Eulerian number�

We will write permutations as a list of n integers in which the i�th element
is ��i
� e�g��

���
���
 � � � ��n� �
�

A descent in � is just a point in this �nite sequence in which the next term
is lower than the current term�

Example� The permutation ���	� in S� has three descents and two drops�

If � is a permutation then it can also be written in cycle form in the
usual way� In order to specify this form uniquely we write each cycle with

its largest element �rst and arrange the cycles so that the leading elements
of the cycles are in increasing order� where we include the singleton cycles�

De�nition� If � � Sn let  � be the permutation that results from writing �

in cycle form� as above� and then erasing parentheses�

Example� The permutation � � S� corresponding to the sequence ���	����
has a cycle decomposition �����
����
 that has the canonical form �	
�����
����
�

Therefore  � is 	��������

��



Note that the map taking � to  � is bijective since � can be uniquely
reconstructed from  � by inserting left parentheses before every left�to�right
maximum and then inserting matching right parentheses� This permutation
of Sn is certainly bizarre at �rst glance� but it plays a surprisingly crucial

role in various situations �see ��
 or ���

�

Theorem lem� The number of permutations of �n
 with k descents

is equal to the number with k drops� i�e��

	n�k
 �

�
n

k

�
�

Proof lem� A descent of  � must lie inside a cycle of � since our

conventions guarantee that the last element in a cycle is followed
by a larger integer� By the meaning of the cycle decomposition
� �namely� that elements within cycles are mapped to the next
element in the cycle
 we see that a descent of  � corresponds to a

drop of �� Conversely� a drop in � must occur within a cycle �i�e��
not in passing from the last element of a cycle to the �rst
 and
corresponds to a descent in  �� Thus the number of permutations
with k descents is equal to the number 	n�k
 with k drops�

Example� again� The permutation � � ���	���� has drops at t �
�� �� �� �� and the permutation  � � 	������� has descents at i � �� �� �� ��

The Eulerian numbers 	n�k
 �
�n
k

	
play a role in a variety of combi�

natorial questions beyond drops and descents ����
� ���
� ���

� although no
notation seems to be standard yet� We recall some of their basic properties�

If a permutation � � ���
���
 � � � ��n� �
 has k descents then its reversal
�� � ��n� �
��n� �
 � � � ���
 has n� k � � descents� Thus

�
n

k

�
�

�
n

n� k � �

�
� ��


By relating permutations of �n
 to permutations of �n� �
 in the usual way�
a more involved combinatorial argument shows that�

n

k

�
� �k� �


�
n� �

k

�
� �n� k


�
n� �

k � �

�
� ��


�	



Using this recursion� it is easy to tabulate Eulerian numbers�
Finally� the Eulerian numbers arise as coe�cients of the linear relations

connecting the polynomials xn with the polynomials

x�k

n

�
�

Worpitzky�s Identity�

xn �
n��X
k��

�
n

k

��
x� k

n

�
�

This identity can by readily proved by induction using equation ��
� It
apparently �rst appeared in ���
 �see also ���
 and ���

� in ���
 it appears
as a special case of a much more general statement�

Theorem thm� The number of period�n juggling patterns with
fewer than b balls is bn� i�e��

N��b� n
 � bn�

Proof thm� Our previous formula for N��b� n
 was

N��b� n
 �
n��X
k��

	n�k


�
n� b� k � �

n

�
�

n��X
k��

�
n

k

��
n� b� k � �

n

�
�

Replace k by n� k � � and use ��
 to get

N��b� n
 �
n��X
k��

�
n

k

� �
b� k

n

�
�

The claim is then an immediate consequence of Worpitzky�s iden�
tity�

The simplicity of the �nal result is surprising� The astute reader will note
that we could have avoided introducing the concept of descents by proving
equations ��
 and ��
 directly for the counting function 	n�k
 for drops� It

is a pleasant exercise to provide a direct combinatorial argument� We took
the slightly longer route above because it is amusing and useful in proving

the much more general result in ��
�
By the theorem there are �b��
n� bn patterns of period n with exactly

b balls if cyclic shifts are counted as distinct� Let M�n� b
 be the number of
patterns of exact period n with exactly b balls� where cyclic shifts are not

��



counted as distinct� Thus M�n� b
 is probably the number that is of most
interest to a juggler�

If d is a divisor of n then each pattern of exact period d will be occur d
times as pattern of length n� Thus

�b� �
n � bn �
X
djn

dM�d� b
�

By M!obius inversion we obtain the following corollary to the previous the�

orem�

Corollary �

M�n� b
 �
�

n

X
djn


�n�d
��b� �
d � bd
�

For instance� there are �� genuinely distinct patterns with period three

with three balls� The reader may �nd it instructive to list all of them
explicitly�

Several people have reproved Theorem 	 from other points of view�

Richard Stanley sent us a proof using results in ���
� Jeremy Kahn sent

us a bijective proof using a di�erent labeling function for juggling patterns�
Walter Stromquist sent us an interesting bijective proof that uses a very cu�

rious relabeling of site swap patterns� Adam Chalcraft ���

 sent us a proof

using ideas similar to those of Stromquist� It is striking that the result seems
to be of considerable interest to a number of people�

Several of these proofs are shorter than ours� and some are much closer
to being more transparent �bijective� proofs� However� the proof given here�

in addition to using some interesting combinatorics� is the special case of the

proof of the much more general result in ��
� The basic motivation of that
result is to replace the set �n
 with an arbitrary poset� For some posets

we can give a natural interpretation of that more general result in terms
of juggling patterns in which more than one ball can be thrown at once�
but we still haven�t been able to give a juggling interpretation for arbitrary
posets� After hearing of our results from Richard Stanley� E� Steingr"#msson

reproved ����

 the general results about posets using results from his thesis�
Among many other things� he generalizes the notions of descents and drops
�actually� in his terminology� a mirror notion he calls �exceedances�
 to
certain wreath products of symmetric groups�

NOTE ADDED IN PROOF� In their recent preprint� �Juggling and
applications to q�analogues�� Richard Ehrenborg and Margaret Readdy give

��



a q�analogue of our main result� In addition they generalize the ideas to
multiplex patterns �in which a hand can catch and throw more than one
ball at once
 and give applications to q�Stirling numbers and the Poincare
series of an a�ne Weyl group�
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